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SUMMARY

When applied to mobile software, mutation testing is particularly costly due to the deployment of the app
under test onto the device: if one deployment is made for each generated mutant, the execution time be-
comes unapproachable. This paper analyses how the combination of different cost reduction techniques im-
proves the execution time of mutation testing in mobile apps. The techniques reviewed and combined are
mutant schema, parallel execution and two different ways of executing tests against the mutants (all against
all and all against mutants remaining alive), as well as greedy algorithm for reducing the test suite size. This
paper also presents a mathematical model of cost reduction and checks its validity with several experiments.
Furthermore, the exhaustive and long experimentation has led the authors to compile a set of good practices
which are also presented in a set of lessons learned. © 2021 John Wiley & Sons, Ltd

Received 14 February 2019; Revised 8 February 2021; Accepted 17 February 2021

KEY WORDS: cost prediction; mobile testing; mutant schema; mutation testing; parallel execution

1. INTRODUCTION

Mutation testing builds on discovering the artificial faults inserted in copies of the System Under
Test (SUT) which are called mutants. The effectiveness of mutation testing has been demonstrated
in many empirical studies [1] although it has the important drawback of its high computational cost,
which is closely related to the number of mutants generated. Thus, cost reduction in mutation test-
ing is a very active research matter [2–3]. Most of these studies are focused on the reduction of the
number of mutants and on how tests are executed against mutants.
The situation is especially hard in the testing of mobile software. As Deng et al. point out [4], ‘for

a variety of technical reasons, test execution [in Android] tends to be quite slow’, which ‘is partic-
ularly troublesome for Android testers’. These authors report that ‘a single iteration of an experi-
ment required more than 20 hours’. In the experimentation carried out in this article, we have
often far exceeded that value.
This is due to the nature of instrumented Android test cases. In Android, test suites can be com-

posed of ‘unit’ or ‘instrumented’ test cases:
• Unit test cases can be executed as classical JUnit tests, directly on the developer’s computer,

and their execution is relatively fast.
• Instrumented test cases simulate interactions of the user with the application or use

Android-specific resources (sensors, for example). These tests require the application under
test to be deployed and installed on an emulator or mobile device.
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Instrumented tests turn compilation, deployment, and installation into highly costly tasks,
slowing down the whole mutation process. This is also highlighted by Escobar-Velásquez et al.
[5], for whom ‘Time is an issue in mutation testing, for both generation and testing time’.
This paper analyses the influence of several well-known cost reduction techniques on the muta-

tion testing cost of Android applications. So, although this is a work about mutation testing, its goal
is neither to validate nor to propose mutation operators, and neither to propose techniques to iden-
tify equivalent mutants. Our goal is to provide some kind of model to guide research and develop-
ment of cost reduction techniques in mutation testing. Ideally, the proposed models will allow the
theoretical study of cost reduction techniques to be undertaken before all the necessary infrastruc-
tures are developed and before starting the very costly experimentation phase.
This article describes a mathematical model that can be used to estimate a priori the time required

to perform a mutation test on a mobile app. The model describes the expected execution time con-
sidering the use of Mutant Schema, Parallel execution and two different test case execution algo-
rithms. The fit of the mathematical model is validated with a set of mobile apps, and it could be
extended to consider other cost-reduction techniques. Although the model is applicable to any other
context, our motivation for developing it has been mobile-software testing because of its high cost.
As shown in Section 3, several researchers have applied mutation testing to mobile software. To

our best knowledge, all of them are focused on the proposal and development of mutation operators
for this specific context, but none deals with the problem of execution time. Nonetheless, they all
mention it as one of the biggest obstacles in mobile mutation testing.
Besides the mathematical model and the analysis of combinations of cost reduction techniques,

the article presents a set of lessons learned (Section 7) and proposes some future lines of work
(Section 8). Regarding the former, for instance, we redefine classic mutation processes [6, 7],
now introducing the expected test-case execution time as an influencing factor to prioritize
test-cases execution. Related to the latter, we point out some lines of research that undoubtedly will
contribute to improve and to extend mutation testing not only to mobile software but also to other
kinds of systems.
We also give a brief description of BacterioWeb, a tool we have developed for supporting the

whole mutation testing process of mobile software through the web.
This paper is structured as follows: Section 2 overviews how Android apps are compiled,

installed and tested, which is required for understanding the root cause of our problem. Section 3
is divided into two subsections, the first one describes mutation testing on mobile apps, while the
second one reviews some cost reduction techniques in mutation testing. Section 4 defines several
mathematical models of the cost reduction techniques applied. Section 5 describes the Mutant
Schema approach used. Section 6 describes the experimental validation. Section 7 presents some
lessons learned as a result of experimentation. Section 8 draws some possible future lines of work.
We finish the paper with some conclusions in Section 9.

2. STRUCTURE AND TEST OF ANDROID APPLICATIONS

Android apps are usually written in Java or Kotlin and packaged for installation on the device as an .
apk file. When compiled, the .java or .kt source files are translated into their corresponding .class
files (made up of a Java Virtual Machine compatible bytecode), and from there, a second stage of
compilation translates them into .dex files. Together with the resource files, the .dex files are pack-
aged into an .apk file which contains the app. On the physical device, dex files are interpreted either
by the Dalvik or by the ART (Android Runtime) virtual machines, depending on the Android ver-
sion. Therefore, there are two compilation steps (from .java to class and from .class to dex) and
one packaging step before the application is installed on the device.
Figure 1 illustrates a supposed app (app.apk) composed of three classes (Screen1 and Screen2,

which conform the user interface and are specializations of Activity, and DomainObject, which does
not have any relation with the Android libraries). In the example, we have two different types of
tests:
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• Unit tests, which exercise the business logic. These test cases do not need any special Android
resource. These test suites do not need the construction of an apk and can be executed without
any device.

• Instrumented tests, whose test cases require special Android resources for interacting with the
user interface (clicking, writing …), using sensors and so on. Its execution requires the produc-
tion of a separated apk file (testApk.apk in the example), which must be installed on the device.

Although the testApp.apk file only needs one deployment, a classic mutation approach [6, 7] re-
quires that a different version of the app.apk is compiled, packaged and installed on the device for
each mutant. The costs of compiling, packaging and installing are so high that testing a mobile app
with a classic mutation testing process becomes almost completely impracticable. Thus, mobile
software testing is an especially suitable context for applying cost reduction techniques.
Figure 2 shows part of the actual organization of the test files in WordPress, which is one of the

apps we have used in our experiments. Instrumented and unit tests are respectively located under
the androidTest and test folders. Files in these folders can be auxiliary classes (mocks, for example)
or test suites. When the tests are to be executed from the official IDE (Android Studio), this one:
• For the instrumented test cases, the IDE creates a testApp.apk and one app.apk file. Both apks

are pushed and installed on the mobile device (either an emulator or a physical device). Then,
the IDE opens a virtual terminal on the device (whose operating system is based on Linux) and
sends a command for running the tests (i.e. adb shell am instrument -w -r -e …). If all
the test files are selected, the device iterates on each file and, inside each file, on each test
method.

• For the unit tests, the IDE directly calls the gradlew test command on the folder where the
project is located (there can be variations of the command). It launches a compilation of the
project and the execution of the tests under the test folder. These test cases do not need any
connected device.

Figure 1. Compilation and packaging of an Android app.
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There are frameworks, such as Robolectric [8], that allow to execute instrumented test cases with-
out any connected device (physical or emulated). Robolectric also mentions the execution time as
its main reason for existence: ‘Running tests on an Android emulator or device is slow! Building,
deploying, and launching the app often takes a minute or more’. The main problem with this frame-
work is that it does not support all the functionalities of real devices.

3. BACKGROUND

This section reviews some relevant works related to mutation testing on mobile software, as well as
the main cost-reduction techniques in mutation testing.
The massive development of software for mobile devices is so recent, and the platforms and op-

erating systems evolve so quickly, that the techniques and tools that could be valid a few years ago
may not be longer applicable today: as Kirubakaran and Kasthikeyani pointed out, ‘By the time this
paper has been presented, the mobile app landscape will have changed’ [9].

3.1. Mutation testing on mobile apps

The special characteristics of mobile software (Table I) have a direct influence on testing.
Since mutation operators inject common errors that a competent programmer could introduce

[12], the most significant research works about mutation testing of mobile software focus on: (1)
analysing the suitability of classic mutation operators to mobile software and (2) the proposal of
new mutation operators to reproduce common faults in this environment. Thus, Deng et al. [4]
and Escobar-Velásquez et al. [5] follow this approach. Jabbarvand and Malek [13] directly propose
mutation operators for the testing of the behaviour of apps with different energy-consumption rates.
Deng et al. [4] propose the 11 mutation operators for Android shown in Table II, that they classify

into five categories. Their source of faults is some Google’s technical documentation for testers and
some significant characteristics of Android apps (event-driven nature, configuration saved in XML
files, null values and screen orientation).

Figure 2. Organization of tests in WordPress.
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In a very recent article, Escobar-Velásquez et al. [5] extended a previous study of 2017 [14]. They
analysed 2,023 fault reports taken from six different sources (bug reports of open source Android
apps, bug-fixing commits of Android open source apps, Android-related Stack Overflow discus-
sions, the Exception hierarchy of the Android APIs, Crashes and bugs described in previous studies
and Reviews poster by users of Android apps on the Google Play Store).
Their analysis shows that 65% of the bugs are typical of any Java application, and that the re-

maining 35% are directly related to Android-specific characteristics. They classify the bugs using
a taxonomy with 14 high-level categories of faults. Some categories (e.g. ‘Collections and Strings’)
only contain Java faults, others (e.g. ‘Activities and Intents’) Android-specific faults and others
(such as ‘Input/Output’) contain a mix of both.
The authors propose 38 mutation operators covering 10 out of the 14 categories. Some of the op-

erators are specifically designed for Android.
Besides the taxonomy and the operators, an additional and interesting contribution is their

MutAPK tool that directly inserts the faults into the compiled and packaged APK file. They also de-
scribe MDroid+, another tool that generates the faults from the source code.
Deng et al. [4] analyse the quality of their operators generating mutants for several apps and ex-

ecute tests against the mutants. Escobar-Velásquez et al. [5] do not use any test case execution tool.
It is worth noting that Deng et al. emphasize the excessive cost of tests execution, because their

mutant generation tool builds an .apk file for each mutant.
Jabbarvand and Malek [13] search ‘energy anti-patterns’, and from them, they build 50 operators

that, for example, increase the frequency of the location update requests or do not switch off the
Bluetooth. Their testing framework is called μDroid. The μDroid generates mutants, and to deter-
mine whether a mutant is killed, it compares its power consumption with the original program.
There are no details about how test cases are executed. Regarding the test execution time, the au-
thors only report about the mean times for determining whether mutants are killed (i.e. comparing

Table I. Special characteristics of mobile software (taken from other studies[5, 10–11]).

(1) Connectivity and mobility in multiple network connections with different bandwidths.
(2) Different screens sizes, resolutions and orientations.
(3) Resource constraints (memory and processor).
(4) Context awareness and multiple input channels (users, sensors and networks).
(5) Potential interaction with other applications.
(6) Security and vulnerability.
(7) Finite energy source.
(8) Double nature of apps (native and web).
(9) Short development life cycle (to gain competitive advantage).
(10) Performance.
(11) Multiple devices and operating systems.

Table II. Android mutation operators [4].

Deng et al.’s mutation operators

Category Operator

Intents Intent Payload Replacement
Intent Target Replacement

Activity lifecycle Lifecycle Method Deletion
Event handler OnClick Event Replacement

OnTouch Event Replacement
XML Activity Permission Deletion

Button Widget Deletion
EditText Widget Deletion
Button Widget Switch

Common faults Fail on Null
Orientation Lock
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the traces of energy consumption). The mean time is 11.7 s in the nine apps used in their
experiments.
More recently, Paiva et al. [15] describe three mutation operators to test the specific behaviour of

mobile applications related to the non-preservation of the UI state when apps are sent to background
and then back to foreground. The iMPAcT tool is designed to deal with the mutants generated by
these operators [16].
As it is seen, there is a common agreement related to the need of having specific mutation oper-

ators that reproduce common faults in Android applications.
However, to our best knowledge, and even though it is mentioned by several authors, there is a

lack of work done in analysing, adapting or proposing the use of specific techniques to reduce the
cost of mutation testing in this concrete environment. Deng et al. [4] is the only reference pointing
out that performance should be improved with parallel execution, using fewer mutants or building a
faster test framework. We analyse some of these options in this work.

3.2. Cost reduction techniques

Mutation testing has three main steps: mutant generation, test execution and result analysis. The
most influencing factor in the global cost is the number of mutants, especially in the test execution
step: the effort spent in mutant generation is almost insignificant with respect to test execution. Re-
garding result analysis, most tools give details about the mutation score, killed mutants per operator
and so on.
So most cost reduction techniques focus on diminishing the number of mutants generated and on

accelerating the test execution time. In this context, some of the most relevant techniques are as
follows:
1 Higher Order Mutation is a form of mutation testing introduced by Jia and Harman [17]. This

technique combines two or more mutants into the same mutated program (a higher order
mutant). The empirical results by Polo et al. [18, 19] suggest that applying second-order
mutants reduces the test effort by approximately 50%, without too much loss of test effective-
ness. Langdon, Harman and Jia [20] built higher order mutants that are harder to kill than any
first-order mutant. More recently, Abuljadayel and Wedyan [21] presented an approach to
generate higher order mutants using a genetic algorithm, also harder to kill than first order
mutants.

2 Mutant Sampling is a simple approach that randomly chooses a small subset of mutants from
the entire set, according to a predefined percentage. Wong and Mathur [22] conducted an ex-
periment using a variable selection rate x from 10% to 40%. The results of this study showed
that Mutant Sampling is valid with an x value higher than 10%. Recently, Derezinska and
Rudnik [23] proposed different mutant sampling criteria based on equivalence partitioning rel-
ative to object-oriented programme features. Based on the results, class random sampling and
operator random sampling are recommended for OO in standard mutation testing, since the
mutant sampling technique is easily applicable in comparison to other cost reduction
techniques.

3 Selective Mutation [24, 25] firstly suggested by Mathur [26] and later extended by Offutt, Lee,
Rothermel, Untch and Zapf [24] states that the number of mutants can be reduced by applying
a subset of the mutation operators. If all mutants generated by the A mutation operator are also
killed when the mutants produced by B are killed (i.e. one operator subsumes another one),
then the tester could apply only one of these mutation operators, either A or B. The objective
is to find a small set of mutation operators that generates a subset of all possible mutants with-
out a major loss of test efficiency. Some of the most recent works in this line of research are
previous studies [27–30].

4 Parallel Execution [31–32] distributes the mutants among different physical machines, exe-
cuting test cases in parallel. It gets to reduce the total time of execution with no loss of effec-
tiveness although it obviously requires a more complex infrastructure.

5 Mutant Schema [3] is designed to reduce the cost of test execution. The basic idea of this tech-
nique is to compose different programmes into a metaprogram (all the programme versions are
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included in a single file) that holds a set of metaprocedures. In order to determine which of the
programme versions included in the schema must be executed, some type of control mecha-
nism must be implemented. To our best knowledge, the first work about Mutant Schema is that
of Untch, Offutt and Harrold schema [3], who created a mutant schema generator for Fortran.
They used metamutants and metaprocedures. A metamutant contains all the mutants in a sin-
gle file as a set of metaprocedures, which are functions that gather the different changes intro-
duced by mutation operators.

That work from 1993 has inspired other researchers:
• Ma, Offutt and Kwon [33] adapt the idea to Java programmes in the MuJava tool, also

automating the metamutant generation. These authors create metaprocedures for the
object-oriented characteristics, such as inheritance, polymorphism and instantiation overhead.
Some of these authors reuse this very same approach in a later work [34].

• Mateo and Usaola [35, 36] also apply Mutant Schema to Java programmes. They generate sev-
eral metamutants (depending on the operators and the mutated class files) that include if-else
statements to determine the version to be executed. The original Java bytecode is modified
to call the corresponding mutant’s metaprocedure.

• Papadakis and Malevris [37] apply the original Untch et al.’s approach, but adapting it to sym-
bolic execution.

An additional cost-reduction technique is mutant generation at bytecode level. It consists in
inserting the artificial faults directly on the bytecode, so avoiding the further compilation step. Some
tools MuJava [33], Javalanche [38] and Bacterio [39]. A recent study by Hariri et al. [40] has shown
that mutation testing at source level produces much fewer mutants than at bytecode level, so being
test execution less expensive. Moreover, source level still generates a similar number of minimal
and surface mutants, and the mutation scores at both levels are very closely correlated.
The techniques explored in this article are Mutant Schema and Parallel Execution, both isolated

and in different combinations, as well as the non-use of any cost reduction technique at all.
BacterioWeb supports Mutant Sampling too. High Order Mutation is not supported by the tool
and, regarding Selective Mutation, BacterioWeb allows the tester to select the mutation operators
to apply, but we have not made any analysis to check possible subsumptions among operators.
The strategy used for test execution also has a strong impact on the total testing time [6], [7]. In

fact, in the most primitive model, the tester executes all test cases against all mutants, although it is
possible to reduce the number of executions if each test case is only launched against those mutants
remaining alive: suppose a system with seven mutants and five test cases. Suppose also that the kill-
ing matrix obtained after executing all tests against all mutants is the one appearing in Table III: as
shown, 40 executions (five test cases against seven mutants plus the original programme) are re-
quired to complete the process.
However, if test cases are launched against mutants that, after each iteration, remain alive (i.e. the

test suite does not attempt to ‘kill twice’ the same mutant), the number of executions may be lower
while the mutation score is preserved: in Table IV, t2 is not executed against the mutants that t1 has
already killed and, in general, tn + 1 is not launched against the mutants killed by t1..tn. In this ex-
ample, 20 executions are required (15 + 5 of the original).
Although launching ‘all against all’ requires in general much more executions, it may be useful if

the tester desires to get a reduced test suite from the original one [41]: as shown in Table V, a greedy

Table III. An ‘all against all’ killing matrix for a supposed system.

Variable m1 m2 m3 m4 m5 m6 m7

t1 X X X X
t2 X X X X X
t3 X X X
t4 X X
t5 X X X X
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algorithm applied to Table III would select {t1, t5} as candidate test cases for the future regression
tests.
After completing a cycle of mutation testing, BacterioWeb provides the tester a list of the best test

cases applying a greedy algorithm such as the one just described.

4. MATHEMATICAL MODELS OF COST REDUCTION TECHNIQUES

This section models the theoretical savings of the cost reductions techniques used in the experimen-
tal section. These models are a basis for the experimentation and the evaluation of the combination
of the cost-reduction techniques applied.
From the execution time point of view, the worst situation is when no cost-reduction technique is

applied: neither Mutant Schema nor Parallel Execution. In this situation, all test cases are executed
against all mutants. Although the absence of cost-reduction techniques is obviously unadvised, it is
useful to take it as a baseline for estimating the cost reduction achieved. This idea is similar to that
of Grindal, Offutt and Andler [42] in their paper about combinatorial test generation: although All
combinations is not a good technique (it produces many test cases, many of which are redundant),
‘it is often used as a benchmark with respect to the number of test cases’.
Setting aside the result analysis step, the total time required for executing T (a set of test cases)

against M (a set of mutants) is the sum of the times for mutant generation and for the required steps
for executing the tests (Equation 1).

T ¼ Tgen þ Texec (1)

Both with or without Mutant Schema, and independently of the execution algorithm, the mutant
generation time (Tgen) is equal and does not depend on the approach. So we will not consider it in
the next equations.

4.1. Mathematical model of Texec without any cost-reduction technique

With respect to the execution time, it depends on the following:
1 The number of test cases and the number of mutants (|M|).
2 The nature of the test suite (unit or instrumented). The execution of instrumented test suites

requires compiling the app, packaging it into an apk, pushing it onto the device and executing
the tests. Unit tests only need the compilation and the execution.

3 The execution algorithm: in this paper, we distinguish between executing all test cases against
all the mutants (‘All against all’, such as in the example of Table III) and only against the mu-
tants remaining alive (‘Only Alive’, like in Table IV).

Table IV. An ‘only against alive’ killing matrix for a supposed system.

Variable m1 m2 m3 m4 m5 m6 m7

t1 X X X X
t2 X
t3
t4 X
t5 X

Table V. A reduced test suite obtained from Table III.

Variable m1 m2 m3 m4 m5 m6 m7

t1 X X X X
t5 X X X X
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Table VI summarizes the tasks to be performed depending on the type of test.
In the case of instrumented tests, it must build, push and install an apk with the change that cor-

responds to every mutant. The tests are launched against all the mutants (M), as shown in
Equation 2. For unit test cases, Tpush = Tinstall = 0.

TNoTech
exec ¼ ∣M ∣ · Tcompile þ Tpush þ Tinstall þ Trun

� �
(2)

In Equation 2:
• Tcompile is the time required to compile one version of an app.
• Tpush is the time required for pushing the apk file corresponding to an app from the computer to

the device.
• Tinstall is the time required for installing an app on a device. The apk file has been previously

deployed onto that device.
• Trun is the time required for executing the test suite against an app.

4.2. Mathematical model of Texec with Mutant Schema

The same steps are required for Mutant Schema. There is however a previous step to generate and
mount the schema (Tms), but there is only one compilation and, for instrumented tests, only one
pushing and one installation. As in the previous case (we are considering the All against all
execution), all the tests are launched against all the mutants, as shown in Equation 3.

TMS
exec ¼ Tms þ Tcompile þ Tpush þ Tinstall þ ∣M ∣ · Trun (3)

Actually, Tms is very-very low in most cases (7–8 ms in almost all projects). Even in the case of
WordPress (one of the selected applications for our experiment, which has 538 Java source files and
109,991 lines of code), the generation of the Mutant Schema is almost insignificant (Figure 3).
Thus, we will remove Tms from our equations.

4.3. Mathematical model of Parallel Execution

Without Mutant Schema and with n devices, the execution time is directly reduced in 1/n (Equa-
tion 4): every task is made |M| times, but distributed in parallel on the n connected devices.

TNoTech
exec; n ¼ ∣M ∣ · Tcompile þ Tpush þ Tinstall þ Trun

� �

n
(4)

Mutant Schema still requires only one compilation; the system must be uninstalled and installed
on all the devices, but since these tasks are executed in parallel, it is like performing them only once.
Trun is reduced in 1/n (Equation 5):

Table VI. Execution tasks depending on the type of tests.

Type of test Tasks

Unit Compile
Run tests

Instrumented Compile (and build APK)
Push APK onto devices
Install APK
Run tests
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TMS
exec; n ¼ Tcompile þ Tpush þ Tinstall þ ∣M ∣ · Trun

n
(5)

Equations 4 and 5 substitute Equations 2 and 3 with the introduction of the new parameter, n
(n = 1 when there is no parallel execution).

4.4. Mathematical model of Only Against Alive with Mutant Schema

The success of Only Against Alive depends on the better or worse ‘luck’ in the execution order of
the test cases:
• The best situation happens if the first test case is able to kill all the mutants, since no more test

cases need to be executed (i.e. the killing matrix would have only one row with all the mutants
killed). This is illustrated in Table VII, where the first test finds all the artificial faults. In this
case, there is a cost reduction factor (we call it ρ) of 1/|T|.

• The worst situation is when none of the tests kills any mutants (all the cells in the matrix would
be empty) or if the last test case executed is the only one that kills mutants (Table VIII). In any

Figure 3. Ten measures of Tms and Tcompile for WordPress and its 538 Java files.

Table VII. The first test kills all the mutants (ρ = 1/5).

Variable m1 m2 m3 m4 m5 m6 m7

t1 X X X X X X X
t2
t3
t4
t5

Table VIII. The last test kills all the mutants (ρ = 5/5).

Variable m1 m2 m3 m4 m5 m6 m7

t1
t2
t3
t4
t5 X X X X X X X
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of these two situations, all the tests are executed against all the mutants. There is no cost re-
duction in this case, so ρ = 1.

Without Mutant Schema, the total time is given by Equation 6:

TNoTech; OA
exec; n ¼ ∣M ∣ · Tcompile þ Tpush þ Tinstall þ ρ Trun

� �

n
(6)

With Mutant Schema, the total time is (Equation 7):

TMS; OA
exec; n ¼ Tcompile þ Tuninstall þ Tinstall þ ∣M ∣ · ρ · T run

n
(7)

In the worst case, the reduction factor is ρ = 1, being in this case the times equal to those in Equa-
tions 4 and 5.
In the best case, the reduction factor is ρ = 1/|T|, where |T| is the number of test cases. This be-

haviour occurs if all the mutants are killed by the first test case executed.

In the average cases, the reduction factor takes intermediate values. Therefore,
1
∣T ∣

≤ ρ ≤ 1.

Obviously, every test case requires a different time for running, and therefore, the reduction factor
ρ is not exactly 1/|T|. Consider however that we are executing the same test cases against hundreds
or thousands of versions (the mutants) of the SUT, and in the experimentation, every test cycle has
been executed several times. Thus, we can accept that the mean times are normally distributed and
that the reduction factor is, in general, very proximal to 1/|T|. Anyway, Table XIII will show these
very small differences.

4.5. Improvement factor

The improvement in the execution time with respect to our benchmark (non-using any technique,
Equation 2) can be described as a quotient. Thus, the ‘improvement factor’ (IF) of applying Mutant
Schema with Parallel execution on n devices and an arbitrary reduction factor (ρ) is given by Equa-
tion 8. Note that, if ρ = 1, this equation is valid for the All against all execution algorithm.

IF ¼ TNoTech; OA
exec; n

TMS; OA
exec; n

(8)

We develop the equation replacing 4 and 5 in 8:

IF ¼
Mj j · Tcompile þ Tpush þ Tinstall þ ρ · Trun

� �

n

Tcompile þ Tpush þ Tinstall þ ∣M ∣ · ρ · Trun

n

(9)

Removing n from the numerator:

IF ¼ Mj j · Tcompile þ Tpush þ Tinstall þ ρ · Trun

� �

n · Tcompile þ Tpush þ Tinstall

� �þ Mj j · ρ · Trun
(10)
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As |M| grows up, IF improves, although it tends to asymptotically stabilize towards a maximum
(Equation 11).

lim
Mj j→∞

IF ¼ Tcompile þ Tpush þ Tinstall þ ρ · Trun

ρ · Trun
¼ 1þ Tcompile þ Tpush þ Tinstall

ρ · Trun
(11)

4.6. Assumptions

The comparison of the times and the calculus of the limit in Equation 11 requires that the different
times can be compared. Thus, we assume that all of them are similar: that is, the times required to
compile (Tcompile), pushing (Tpush) and installing (Tinstall) an app are similar with or not without Mu-
tant Schema or Parallel Execution. In the same way, we assume that Trun, which is the time required
to execute 1 test case against an app is also similar, independently on the use of Mutant Schema.
These assumptions are discussed in Section 6 (Research Question 1).

5. MUTANT SCHEMA GENERATION

The Mutant Schema are generated from the source code following the Untch et al.’s idea [3].
Every Java source file is processed with the javaparser library [43]. This library builds the ab-

stract syntax tree of each processed file. Both the source code and the serialized abstract syntax tree
are saved in a MongoDB database (the general architecture of BacterioWeb will be described in
Section 6.2).
The Mutant Schema generator iterates trying to apply each selected mutation operator to the con-

sidered file. For example, the traditional AOR operator takes all the binary expressions in the file
and, if the corresponding operator is +, �, *, /or %, modifies the original statement by a call to
MutantDriver. X, where X is the name of original operator.
Consider the statement a + b + c: in prefix notation it can be written as +(a, +(b, c)). If we sub-

stitute the operator by a call to a PLUS method in aMutantDriver, the statement can be rewritten as
follows:

In this case, every operator can be replaced by the other four operators. This is: + is replaced by
�, *, / and %; � is replaced by +, *, / and %, and so on.
Suppose the first mutated binary expression is b + c. In order to represent the four possible mu-

tants, the statement MD. PLUS(b, c) will be written as follows:

The four indexes (1–4) reference the mutant index.
Then, the second binary expression (a + b + c, that now is a +MutantDriver.PLUS(b, c, 1, 2, 3, 4))

is mutated. The whole expression remains as follows:

TheMutantDriver implements the PLUS (int x, int y, int … indexes) metaprocedure as the method
shown in Figure 4: the first two parameters are the numbers to be added; the others are the indexes
of the applicable mutants (note that Java allows to pass a variable number of parameters with the
suspension points, which can be processed as an array).
Consider the following situations:

a We are executing the test suite against the original program, which has 0 as mutant index:
in this case, the implementation of PLUS reads the value of currentMutant from a file.
Since its value is zero, it returns the result pointed by the first if: a + b, which is the same
than in the original programme.
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b We are now executing the mutant index with value 3 that is the third mutant proceeding
from b + c. This value has been saved in the aforementioned file and is assigned to
currentMutant in the loadCurrentMutant method. This value (3) is searched in the array
passed in the variable parameters set (it was in previous studies [1, 2, 24, 44]) and found
with location = 2. Then, the method returns a/b.

c If we are executing the test suite against the mutant index number 100, since this value is
not found in the array, the method returns the expression in the first if.

As an additional example, Figure 5 shows the implementation we have given to the ITR mutation
operator described by Deng et al. [4] and by Escobar-Velásquez et al. [5].
The ITR operator replaces the target activity of an Intent. Consider the statement:

Supposing the mutant to be generated is the 15th, the statement is changed to:

When the mutant is to be applied (i.e., currentMutant==15), the program will behave as if the
programmer would have written:

5.1. Disadvantages of Mutant Schema (I): triviality of schema mutants

Often, schema mutants are much easier to kill than traditional ones. Consider the small, selected,
fragment of the Kuar app (one of the projects used in our experiments) shown in Figure 6: a
SlidingBoard holds a collection of Square instances.

Figure 4. Implementation of PLUS in the MutantDriver.

Figure 5. Implementation of the ITR operator in the MutantDriver.
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Figure 7 shows a small piece of code of the getFirst method of the SlidingBoard class. Note that
it takes the Square instance located at the coordinates (row, col) and, if it is not null, reads its value
and casts it as an Integer. Since the whole decision is evaluated in short-circuit, if the instance is
null, the second condition is not evaluated.

Figure 6. A small excerpt of the Kuar design.

Figure 7. A fragment of the code in the SlidingBoards’ getFirst method.

Figure 8. One of the schema mutants of getFirst in SlidingBoard.

Figure 9. A piece of code, two classic mutants and a Mutant Schema.
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The statement in Figure 7 works rightly both in the original programme as in a classic mutant that
replaces, for example, the && by applying the LOR operator.
Consider however the effect produced by the same operator with Mutant Schema, that appears in

Figure 8: the original infix expression (with the form A && B) is translated into a prefix expression
MutantDriver.AND(A, B, 2), where the last value references the mutant index.
In this second case, the decision is not evaluated in short-circuit and, then, both conditions are

evaluated. Suppose that the Square instance is null: in the first time, the instance is compared to
null. With independence of the result returned, the second condition is checked and, since the in-
stance is null, the program cannot cast it to an Integer and crashes, producing what is usually known
as a trivial mutant [5].
According to Escobar-Velásquez et al. [5], a trivial mutant is a mutant that always or frequently

crashes at runtime. Actually, trivial mutants introduce ‘noise’ in the result analysis phase and may
lead to misinterpret the mutation score.
In general, these operators are more frequent with schema than with traditional mutants, although

Deng et al., who do not use Mutant Schema, also are aware of the problem they represent (‘we need
to make our tool generate fewer mutants that immediately crash […]’).

5.2. Disadvantages of Mutant Schema (II): legibility of schema mutants

The example in Figure 9 proceeds from the Kuar app too: the original statement checks whether a
point is inside the area of a board. The statement is a decision with four conditions and is mutable in
several ways.
Suppose that the tester wants to investigate why one of this statement’s mutants remains alive:

clearly, this task is much easier comparing the original code in rows 2 and 3, than with the too con-
fusing call to the Mutant Driver of the last row.

6. EXPERIMENTATION

In this section, we combine three cost reduction techniques (Mutant Schema, Parallel Execution
and Only Alive) and analyse their influence on the execution time of mutation testing in mobile soft-
ware. The benchmark for doing the comparison is the non-use of any cost-reduction technique.
From these experiments, we check the goodness of our mathematical models to estimate the execu-
tion cost of a mutation testing cycle.
It is important to remind that the goal of this paper is neither the proposal nor the validation of

mutation operators, but only measuring how the application of different techniques reduces the time
spent in mutation testing. Anyhow we use both traditional mutation operators as Android-specific.

6.1. Research questions

In these experiments, we assess the impact of using several cost reduction techniques in mutation
testing with a focus on mobile applications. We also validate the mathematical models presented in
Section 4.
Our research questions are as follows:
• RQ1: Can we accept the assumptions made in the Epigraph 4.6 (assumptions) of Section 4
(mathematical models) valid? This is, the times for compiling, pushing, installing and running
are the same, independently of the use or not of Mutant Schema?

• RQ2: How good are the mathematical models to predict the mutation testing time?
• RQ3: How does the number of mutants influence on the improvement factor?

6.2. Mutation testing tool

The tool used for performing the experiments is BacterioWeb, a mutation tool we have developed as
an evolution of Bacterio [39]. BacterioWeb runs on a web server and can be executed with any
browser. The user (a tester) uploads his/her Android projects to the server. Figure 10 describes,
as use cases, the main functionalities of the tool and its relationships with external actors: the
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projects are saved in MongoDB databases (therefore making the projects accessible from any place)
and in the server’s local file system. The communication with the external devices (physical devices
or emulators) is achieved by means of the creation of operating system processes. For example, the
execution of a command on a device requires creating an operating system process for sending the
order. All communication between the frontend and the backend is based on the websocket protocol
to keep the user informed of the progress of mutant generation, test execution and so on.

Figure 10. General structure of BacterioWeb.

Figure 11. Collaboration among different instances of BacterioWeb.
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Moreover, and in order to push forward the parallelism, BacterioWeb may communicate with
other instances of BacterioWeb running on other servers, and this in turn helps the use of the devices
they are not using at some point: in Figure 11, instance 1 can send mutants and test cases for exe-
cution on the devices connected to instances 2 and 3.

6.3. Target Android apps

The experiments have been run on the following eight Android apps, which were selected accord-
ing to the following criteria:
• To make use of common mobile functions (such as touch events).
• They must have available test cases implemented by the developers.
• Their source code must be also available.

1 WordPress is the biggest application used in this study. It is used for creating web sites and
blogs. It is published in the Google Play Store, it has over 10 million downloads and almost
150,000 comments. Its source code is available at github.

2 Figures is a project implemented during the development of BacterioWeb for testing some of
its characteristics. It is an app that calculates the perimeter and type of a triangle or of a quad-
rilateral. The calculus can be done locally or by querying a remote web service (Figure 12a).
Moreover, the lengths of the sides can be: (1) directly written (Figure 12b), (2) calculated from
the coordinates where the tester clicks (Figure 12c) or (3) calculated by clicking on the mea-
sures from different sensors (Figure 12d). The selected combination is saved in a set of pref-
erences. It is not a complex project, but it holds the logic of the triangle-type determination

Figure 12. Screenshots of Figures.
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problem (proposed by Myers [45] and typically used in many papers about testing), dealing
with user events, with web communication, with sensors’ data and with preferences.

3 AlarmKlock and JustSit are two of the apps used in Deng et al.’s [4] work on mutation oper-
ators for Android. AlarmKlock allows to set up alarms for different days and hours.

4 JustSit is a single app that shows the user two time counters, one in seconds and the other in
minutes.

5 Tourism has been developed by a company for a Spanish regional government. It uses Google
services to plan touristic visits to cities. The user adds points of interest to a touristic route and
constraints the time and budget; the app gives in return a route fitting the user’s input.

6 Mangosta is an open source, open standard, XMPP/Jabber client. Its code is available at
github.

7 Dexter is an Android library that simplifies the process of requesting permissions at runtime. It
is also available at github.

8 Kuar is a game developed some years ago by one of the authors of this article. The user must
consecutively order the numbers on a board in the fewest moves.

Table IX shows some quantitative data of the apps: the #Files and LOC columns correspond to the
number of Java files in each project (excluding interfaces) and their number of lines of code. Last col-
umns contain the number of test cases in each project and the maximum number of mutants that
BacterioWeb cangenerate.Wewrote the test cases forFigures,Kuar and JustSit. Test cases forTourism
were provided by its developer. The other projects have test cases in their respective repositories.

6.4. Server hardware and mobile devices

For this experiment, only one instance of BacterioWeb is used. Both the Tomcat server and the
MongoDB instances are served from localhost by a MacBook Pro with 16 Gb RAM. Anyway,
the times of connection to the database, writing, reading and so on are removed from the time
calculus.
There are two identical physical devices connected to the server: two Samsung tablets, model

SM-T590 running Android 8.1.0 with 3 Gb RAM.

6.5. Applied mutation operators

As we have said, our goal is not to validate mutation operators for Android, but to measure the in-
fluence of several techniques in the reduction of the time required for mutation testing in Android
projects. Obviously, using one or another operator with so many mutants and executions does not
have any significant impact on the results of our experiments, which are not concerned with the
quality of operators, but with the time required for mutation testing. However, we have imple-
mented the traditional operators most used in the literature for java projects [33] and some
Android-specific operators proposed by Deng et al. [4] and Escobar-Velásquez et al. [5]. The set

Table IX. Some characteristics of the apps.

App

Mutated classes
#

Tests Mutants#Files LOC

WordPress 538 109,991 120 29,554
Figures 13 6,450 31 1,331
Alarm Klock 92 6,608 12 3,239
JustSit 4 483 10 171
Tourism 54 4,902 15 851
Mangosta 59 9,902 31 1,579
Dexter 30 2,872 10 216
Kuar 37 3,580 12 3,225
Total 827 144,788 241 40,166
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of operators will introduce both traditional errors (typical of the Java language) as specific errors for
Android (as event handlers).
Traditional operators:
LOR (Logical Operator Replacement), which substitutes a logical operator by another one (|| by

&&, | and so on).
ROR (Relational Operator Replacement), which replaces a relation operator by another one

(e.g. && by ||).
UOI (Unary Operator Insertion), which inserts predecrements, postdecrements and the unary mi-

nus in numeric variables.
AOR (Arithmetic Operator Replacement), that replaces some arithmetic operators by others

(+ by �, *, /, and so on).
SVR (Scalar Value Replacement) replaces a variable value by a constant. Our implementation re-

places strings by the empty string.
IMCA (Invalid Method Call Argument) is one of the Escobar-Velásquez et al.’s operators [5]. It

randomly mutates a method call argument of a basic type.
Android mutation operators:
The Android operating system makes available to developers different mechanisms for storing

data in files: SharedPreferences files are key-value tables that allow the application to store small
data sets in a simple way. All changes made in an editor are batched, and not copied back to the
original SharedPreferences until a call to commit() or apply() is executed. We define three mutation
operators to reproduce errors that can occur when working with SharedPreferences files:
FEC (Forget Editor Commit): This operator simulates that the developer forgets calling com-

mit. The values are set with some of the putX methods, but the changes are not materialized. So this
operator removes the statement editor.commit(). For killing these mutants, test cases need either to
include an oracle to check that the preferences have been save (what is unusual), or to execute a
long scenario that makes use of the previously saved preferences: therefore, this operator confirms
one of the conclusions of Fraser and Gargantini in [46], who observed that is preferred to have a few
long test cases than many short test cases. This operator is quite similar to the CPSE operator pro-
posed by Paiva et al. [15].
FEA (Forget Editor Apply): This operator is similar to FEC, but in this case, it removes the call

to the apply() method. It works exactly in the same way as the FEC mutation operator.
RSPE (Replace Shared Preferences Editor): A typical error in the use of SharedPreferences.

Editor type files is tomismanage the keys entered in the file. This operator mutates the key-value pairs
of the statementsputInt(…),putBoolean(…), putString(…), putLong(…), putFloat(…)ofdifferentways.
MDL (Lifecycle Method Deletion) is one of Deng et al.’s operators [4]. It deletes each overrid-

ing activity method to force Android to call the version in the super class.
ETR (OnTouch Event Replacement) [4]: It searches and stores all event handlers that respond

to OnTouch events in the current class. Then, it replaces each handler with every other compatible
handler.
KER (Key Event Replacement): Key events contain information about keys pressed. This op-

erator replaces some key events with other equivalent key events: for example, it replaces
KeyEvent.ACTION_UP by KeyEvent.ACTION_DOWN.
IEC (Interchanges the Event’s Coordinates): This operator modifies motion event’s location

through interchanges and replacement of axis values. So, if the user clicks on (100, 200), this mu-
tation operator sends the event to (200, 100).
IPR_E (Intent Payload Replacement Extension): This operator is an extension of the IPR op-

erator (Intent Payload Replacement) proposed by Deng et al. [4]. An Intent can send different types
of data from one activity to another, as key-value pairs. The putExtra(…)method takes the key name
as the first parameter, and the value as the second parameter. IPR_E includes all mutations of IPR
proposed in [4], but it also adds a mutation for the first parameter (empty String) and different mu-
tations for the key-string pairs.
ITR (Intent Target Replacement) [4], also called InvalidActivityName in Escobar-Velásquez

et al [5]: This operator mutates the Intent target object (an activity), changing the target activity.
This idea also is included in the NACT operator proposed by Paiva [15].
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ORL_M (Orientation Locked Modified): This operator is a modification of the Deng et al.’s
ORL operator [4]. The original ORL freezes the orientation of an activity to be in portrait or land-
scape, and this is done by inserting a locking statement into the source. Our modification preserves
the same idea, but the mutants freeze the orientation of an activity to be in portrait or landscape
through insertion or replacement of setRequestedOrientation(…) statement into the source.
MJP (Modify JSON Put): This operator inserts small changes into the key-value pairs of the

different put(...) methods of the JSONObject class. JSON is a widely used format for message in-
terchange. Developers tend to copy and paste calls to put(...) or to build unexpected hierarchies
of JSON objects. This operator modifies keys and values in put calls.
DICO (Incorrect Call of Opening): SQLite databases can be opened either in read or in read/

write mode. This operator replaces calls to getWritableDatabase by getReadableDatabase in
SQLiteOpenHelper objects.
DIOM (Incorrect Opening Method): This operator has the same effect that DICO, but replac-

ing the flag corresponding to the database opening mode on SQLLiteDatabase objects: it changes
OPEN_READWRITE by OPEN_READONLY in the openDatabase method.
IQ (Incorrect Query): The SQLite database allows the developer to introduce SQL statements

as strings. This operator mutates the query passed as parameter in calls to SQLiteDatabase.
RawQuery(…). This operator is similar to the InvalidSQLQuery proposed by Escobar-Velásquez
et al. [5].
RAQ (Replace read-write Access to a database Query): This operator mutates the calls

allowing the iteration through the result set returned by a database query. It changes moveToFirst,
moveToLast, moveToNext and moveToPrevious by the others.
SIR (Service Identifier not Returned): This operator mutates the getSystemService (java.lang.

String) method, replacing the name of the service required by null.

6.6. Experimental method

For each application under test, we have carried out the following steps:
• Mutant generation. This task generates and saves the mutants in the MongoDB database.
• Second, we execute the test suites against the mutants with the combinations of techniques

shown in Figure 13. Excepting for WordPress, each test suite has been executed against all
the mutants three times to minimize bias. For WordPress, we have taken a sample (10%) of
mutants, since otherwise the execution time is huge. Maybe three times does not seem too
much, but some complete executions with the combination 1 require around a week. At this
point, it is important to note that, since overheating has a very negative impact on computer
performance, all the executions have been made in a room with fixed temperature: the server
(Epigraph 6.2) is a simple personal computer that has been subjected to a very heavy workload
for many hours.

BacterioWeb saves many information in a set of comma-separated files: in one of them
(global.txt), it accumulates all the execution data of all the projects; in the other, it saves exactly
the same data, but creating a single file for each test suite execution. Figure 14 shows an excerpt
of global.txt: each row holds the data of the execution of one test case against one mutant. The
columns contain: (A) the unique id of this test suite execution, (B) the project under test, (C) the test

Figure 13. Execution combinations.
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executor used (NoMS orMS), (D) the test case, (E) the mutant index, (F) the current class under test,
(G) the verdict (A or K depending on whether the mutant is alive or killed), (H) the test case type, (I)
the device where the mutant has been installed, the date (J) and time (K), the execution algorithm (All
against all or Only against alive) in column L, the compile, push and install execution times (M, N
and O) and the run time (P) required by this test case with this mutant.

Figure 14. Two excerpts of the global.txt file, generated by BacterioWeb.

Figure 15. Summary of times in BacterioWeb.
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Figure 14 corresponds to two different executions of a test suite against the Mangosta project.
The execution in the top row took place in the morning (column K) of May 20, 2020 (column J).
The run times always appear on column P. However, the build, push and install times only appear
when these tasks are effectively performed: for example, the mutant in the first row (mutant number
117, column E) was deployed to the device 4bd3f236 (column I). Since the test case kills this mu-
tant (refere to the Verdict in column G) and we are executing with Only alive (column L), the exe-
cution of the mutant is interrupted and, on row 302, the deployment of the next mutant (number
131) to the 4bd3f236 starts.
The bottom row of Figure 14 corresponds to an execution with Mutant Schema (column C). So,

columns M, N and O are empty because the building, pushing and installing are performed before
launching the test suite execution. Anyway, BacterioWeb shows the tester the times spent in its test
execution window (Figure 15). Also note the presence of the time devoted to mounting the mutant
schema.
Therefore, the times collected are the following:
• Tcompile, which is the time required for compiling the application. This time is only applicable

for instrumented test cases.
• Tpush, which is the time for pushing the application from the server to the device. It is also only

applicable for instrumented test cases.
• Tinstall, which is the time for installing the application onto the device. This time is only appli-

cable for instrumented test cases.
• Trun, which is the time spent in executing one test case against one mutant.

6.7. Experimental results

This section is intended to provide answers to the research questions that have been raised.
• RQ1: Can we accept the assumptions made in the Epigraph 4.6 (assumptions) of Section 4

(mathematical models)? This is, are the times for compiling, pushing, installing and run-
ning, independently of the use or not of Mutant Schema?

As we have said in Section 6.6, each test suite has been executed three times in each of the eight
modes shown in Figure 13. That is, each test suite has been executed 24 times in every project.
These executions have produced a lot of data.
For comparing Tcompile, Tpush and Tinstall with and without Mutant Schema, we have taken 3,000

random compilations, pushes and installations with No Mutant Schema and 100 compilations with
Mutant Schema. The reason of the difference in the sample sizes is that No Mutant Schema com-
piles, pushes and installs a lot of times, while Mutant Schema does them only once.
Then, for each time, we have compared the values got and applied the Student’s T. We have two

hypotheses:

H0: Tcompile, Tpush and Tinstall are the same with or without Mutant Schema.
H1: Tcompile, Tpush and Tinstall are different with and without schema.

Table X. Tcompile is similar both with and without Mutant Schema.

Project

Tcompile (ms)

NoTech MS

p valueMean SD Samples Mean SD Samples

AlarmClock – – – – – –
JustSit 2,523 663 3,000 2,486 624 100 0.58
Mangosta 4,373 887 3,000 4,279 911 100 0.30
Figures 1,245 21 3,000 1,241 18 100 0.06
Dexter 1,692 101 3,000 1,684 49 100 0.43
Turismo 2,115 120 3,000 2,095 210 100 0.11
Kuar 1,983 123 3,000 2,001 138 100 0.15
WordPress 5,336 240 3,000 5,301 326 100 0,16

22 of 37POLO-USAOLA M. AND RODRÍGUEZ-TRUJILLO I.

© 2021 John Wiley & Sons, Ltd e1769Softw. Test. Verif. Reliab. 2021;e1769
DOI: 10.1002/stv



If the times were different, then H0 would be rejected (with p value < 0.05) and H1 would be
accepted. If p value ≥ 0.05, then there is no evidence enough to reject H0.
Tables X, XI and XII respectively summarize the data collected from compiling, pushing and

installing in the analysed projects. Note that all p values are greater than 0.05, what leads us to
not reject H0.
Some results may surprise the reader and have surprised the authors. In particular, one expects

that Tcompile should be significantly greater with Mutant Schema, since almost every call, arithmetic
operation or comparison is translated into a call to a method in the MutantDriver.

Table XI. Tpush is similar both with and without Mutant Schema.

Project

Tpush (ms)

NoTech MS

p valueMean SD Samples Mean SD Samples

AlarmClock – – – – – –
JustSit 51 18 3,000 49 23 100 0.28
Mangosta 887 142 3,000 893 151 100 0.68
Figures 102 10 3,000 101 12 100 0.33
Dexter 208 85 3,000 212 106 100 0.65
Turismo 578 186 3,000 588 197 100 0.60
Kuar 281 140 3,000 278 56 100 0.83
WordPress 1,184 452 2,096 1,209 511 100 0.59

Table XII. Tinstall is similar both with and without Mutant Schema.

Project

Tinstall (ms)

NoTech MS

p valueMean SD Samples Mean SD Samples

AlarmClock – – – – – –
JustSit 979 603 3,000 1,012 611 100 0.59
Mangosta 5,129 189 3,000 5,097 211 100 0.10
Figures 4,431 456 3,000 4,344 480 100 0.06
Dexter 4,540 170 3,000 4,509 206 100 0.08
Turismo 6,185 141 3,000 6,191 143 100 0.68
Kuar 4,798 2,711 3,000 4,526 2,634 100 0.32
WordPress 10,132 2,911 3,000 10,159 10,318 3,001 0.53

Table XIII. Trun is similar both with and without Mutant Schema.

Project

Trun (ms)

NoTech MS

Sample p valueMean SD Mean SD

AlarmClock 2,528 801 2,489 815 3,000 0.06
JustSit 9,310 3,129 9,397 3,213 3,000 0.15
Mangosta 10,239 3,755 10,242 3,978 3,000 0.98
Figures 7,453 464 7,465 464 3,000 0.32
Dexter 4,047 666 4,051 689 3,000 0.82
Turismo 11,552 2,960 11,486 2,888 3,000 0.38
Kuar 15,432 8,146 15,704 7,870 3,000 0.19
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With respect to Trun, which is the execution time of a tests case against a mutant, the sample size
in both cases is 3,000. This is because we save (remind the global.txt file in Figure 14) the execution
time of every test case against every mutant and in both cases (with and without Mutant Schema)
thousands of executions have been run in each test cycle. Thus, in this case, we can compare sam-
ples of the same size. As it is seen in Table XIII, neither the null hypothesis can be rejected: that is,
we cannot distinguish whether a test case execution against a mutant has been executed with or
without Mutant Schema.

6.7.1. Partial conclusions. Since there is no evidence to reject H0, we will assume for the remain-
ing experiment that compiling, pushing and installing an app onto a device is the same with
independence of the use of Mutant Schema.
Note that the veracity of this assumption would allow us to build mathematical models with

almost not executing tests.
• RQ2: How good are the mathematical models to predict the mutation testing time?

From the huge amount of data collected by BacterioWeb, we have built several tables for each
project. As an example, next tables summarize the results for the Mangosta project. Mangosta
has a test suite with 31 test cases, and BacterioWeb generates 1,579 mutants for it.
The first five columns in each row includes the number of devices, a number of mutants, the

reached mutation score and the mean of the measured total run time. Last four columns show
the execution time (which is the run time plus the time for compiling, pushing and installing):
the Actual column is the time actually measured, and Estimated is the time calculated according
to the Mathematical models.
We have executed three times all the test cases against the mutants, in the eight variants: for

Mangosta, for example (Tables XIV–XVII), we have executed three times the 31 test cases against
the 1,579 mutants using 1 and 2 devices, Mutant Schema (MS) and No Mutant Schema (NoMS), All
against all (AA) and Only alive (OA). The number of mutants in each row has been randomly
selected from the 1,579, being the same mutants for each variant.
Figure 16 depicts the data about actual and estimated times shown in the previous tables for 1

device. As it is seen, the adjustment of the measured and estimated curves is almost perfect.
It is worth noting that we get similar results in all the analysed projects.
Figure 17 unifies the actual execution times of the tables proceeding from the Mangosta project,

which in turn proceeds from the technique’s combinations listed in Figure 13. As expected, the

Table XIV. Times with the Mangosta project, without Mutant Schema and All against all.

Mangosta, No Mutant Schema, All against all

Texec (h)

Devices |M| M.Score Executions Total Trun (h) Actual Estimated

1 60 0.98 1860 5.4 5.6 5.5
1 100 0.98 3,100 9.0 9.3 9.1
1 300 0.99 9,300 27.1 28.0 27.3
1 600 1 18,600 54.3 56.0 54.6
1 900 0.99 27,900 81.4 84.0 81.9
1 1,200 0.99 37,200 108.5 112.0 109.3
1 1,579 0.99 48,949 142.8 147.4 143.8
2 60 0.98 1860 2.7 2.8 2.7
2 100 0.98 3,100 4.5 4.7 4.6
2 300 0.99 9,300 13.6 14.0 13.7
2 600 1 18,600 27.1 28.0 27.3
2 900 0.99 27,900 40.7 42.0 41.0
2 1,200 0.99 37,200 54.3 56.0 54.6
2 1,579 0.99 48,949 71.4 73.7 71.9
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fastest combination is Mutant Schema, Only Alive and two devices (MS, OA and 2 devices). The
eight combinations were executed for all the projects, getting similar results in all the cases.

6.7.2. Partial conclusions. We can conclude that the estimated times from our mathematical
models and the real times obtained in the execution of test cases are very similar. Therefore, we
can estimate a priori how long it may take to execute mutation tests in a mobile application and,
depending on its feasibility, the tester can make decisions about which combination of cost reduc-
tion techniques is more convenient. The experimental data have shown that: (1) the estimated and
actual times are very similar, (2) the most efficient combination of the applied cost reduction tech-
niques is Mutant Schema, Only Alive and Parallel Execution and (3) Parallel Execution is the most
cost-savings technique.
• RQ3: How does the number of mutants influence on the improvement factor?

Table XV. Times with the Mangosta project, without Mutant Schema and Only Alive.

Mangosta, No Mutant Schema, Only alive

Texec (h)

Devices |M| M.Score Executions Total Trun (h) Actual Estimated

1 60 0.98 1,623 4.6 4.8 4.8
1 100 0.98 2,702 7.6 7.9 8.0
1 300 0.99 7,861 23.1 24.0 23.2
1 600 1 16,441 44.6 46.3 48.5
1 900 0.99 24,107 70.7 73.3 71.2
1 1,200 0.99 32,295 93.8 97.3 95.3
1 1,579 0.99 43,250 124.1 128.7 127.6
2 60 0.98 1,623 2.3 2.4 2.4
2 100 0.98 2,702 3.7 3.9 4.0
2 300 0.99 7,861 11.7 12.2 11.6
2 600 1 16,441 21.8 22.7 24.2
2 900 0.99 24,107 35.2 36.5 35.6
2 1,200 0.99 32,295 46.1 47.8 47.7
2 1,579 0.99 43,250 63.0 65.3 63.8

Table XVI. Times with the Mangosta project, with Mutant Schema and All against all.

Mangosta, Mutant Schema, All against all

Texec (h)

Devices |M| M.Score Executions Total Trun (h) Actual Estimated

1 60 0.98 1860 5.4 5.4 5.3
1 100 0.98 3,100 8.9 9.2 8.8
1 300 0.99 9,300 26.9 27.7 26.5
1 600 1 18,600 54.4 56.1 52.9
1 900 0.99 27,900 78.3 80.9 79.4
1 1,200 0.99 37,200 108.5 111.9 105.8
1 1,579 0.99 48,949 141.8 146.3 139.2
2 60 0.98 1860 2.6 2.6 2.6
2 100 0.98 3,100 4.3 4.3 4.4
2 300 0.99 9,300 13.3 13.3 13.2
2 600 1 18,600 27.7 27.7 26.5
2 900 0.99 27,900 38.6 38.6 39.7
2 1,200 0.99 37,200 54.0 54.0 52.9
2 1,579 0.99 48,949 68.9 68.9 69.6
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In Section 4.5, we defined IF, the Improvement Factor, as the quotient between the time of
non-using any technique (i.e. No Mutant Schema and All against all) with the time of using one
or more cost-reduction techniques:

IF ¼ Mj j · Tcompile þ Tpush þ Tinstall þ ρ · Trun

� �

n · Tcompile þ Tpush þ Tinstall

� �þ Mj j · ρ · Trun
(11)

We also concluded that the improvement factor got by any combination of the analysed techniques
tends to stabilize when the number of mutants grows up. Since the assumptions made in the

Table XVII. Times with the Mangosta project, with Mutant Schema and Only Alive.

Mangosta, Mutant Schema, Only alive

Texec (h)

Devices |M| M.Score Executions Total Trun (h) Actual Estimated

1 60 0.98 1,608 4.5 4.7 4.7
1 100 0.98 2,658 7.5 7.5 7.6
1 300 0.99 7,943 22.2 22.2 22.6
1 600 1 15,996 43.8 43.8 45.5
1 900 0.99 24,595 68.2 68.2 70.0
1 1,200 0.99 32,412 89.3 89.3 92.2
1 1,579 0.99 43,025 122.4 122.4 122.4
2 60 0.98 1,608 2.3 2.3 2.3
2 100 0.98 2,752 3.8 3.8 3.9
2 300 0.99 7,851 11.2 11.2 11.2
2 600 1 16,407 22.5 22.5 23.3
2 900 0.99 23,548 32.0 32.0 33.5
2 1,200 0.99 31,974 43.7 43.7 45.5
2 1,579 0.99 43,510 62.2 62.2 61.9

Figure 16. Actual and estimated times in the Mangosta project.
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Figure 17. Results of all technique combinations in the Mangosta project.

Figure 18. Theoretical tendency in the Improvement Factor with 1 device and different values of ρ (top) and
tendency observed in WordPress.
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mathematical models are acceptable, we can draw the tendencies with arbitrary values for the
different variables involved in Equation 11. Top side of Figure 18 shows the tendency of IF with
different values of ρ and when the number of mutants (horizontal axis) grows up:
• The dotted line evidences that the benefit of using Mutant Schema with All against all (ρ = 1)

is low if the number of mutants is high.
• The scatted line shows the tendency in IF with ρ = 0.5: this is, tests are executed with Only

alive and there is a ‘medium good luck’ in the execution order of test cases.
• Finally, the solid line is the tendency with ρ = 0.1. This situation could correspond either to a

‘very good luck’ in the execution order of test cases or, much better, to a ‘smart’ execution al-
gorithm that prioritizes the test cases with more ability to kill mutants. We will recall this point
in the Future works section.

The actual tendency observed in WordPress (as in all the projects) is shown in the bottom side of
the figure.

6.7.3. Partial conclusions. As it was predicted in the mathematical model, the experimental data
show that Mutant Schema always improves the execution time: the improvement factor rises
quickly when the number of mutants is low, but it stabilizes and tends to a constant from a certain
number of mutants.

6.8. Threats to validity

The nature of the experiments introduces some threats to validity, which must be considered in or-
der to evaluate the conclusions.
Construct validity is the degree to which independent and dependent variables are accurately

measured [47]. All our independent variables are nominal (presence or absence of: Mutant Schema,
Parallel Execution and Only Alive), and the dependent variable (time) is measured objectively by
the mutation tool. To alleviate bias, we performed several repetitions of each execution so as to re-
duce the threat.
Internal validity is the degree of confidence in a cause–effect relationship between the factor of

interest and the observed results [47]. All the variables have been controlled during the experiments
in order to minimize threats to internal validity.
External validity is the extent to which the research results can be generalized to the population

under study and other research settings [47]. Obviously, it is quite risky to affirm that our models are
valid and applicable to any other application and environment. In order to alleviate this threat, we
have used a diverse set of apps with different characteristics and a variety of mutation operators.
We consider that the most significant finding that will allow the greatest generalization of the

mathematical model to other applications, contexts and environments (not only mobile mutation
testing) is the one which responds to RQ1: this is, the compilation, pushing and installing times
are quite similar independently of the use or not of Mutant Schema.
With respect to the execution algorithms (All against all and Only against alive), it is important to

note that, in our case, they are completely deterministic and do not implement any technique to pri-
oritize the execution order of test cases. But, once more, the answers to RQ1, which validate the
goodness of the assumptions made in the Mathematical Models section, allow to realize theoretical
models that should be experimentally validated.

7. LESSONS LEARNED

Due to the number of applications, mutants, test cases, combinations of techniques and—in order to
get reliable measures—the number of repetitions of each task, the process of experimentation and
data collection has been very long. From the observation of BacterioWeb during test execution,
from how it fills-in the killing matrixes and from the many result analysis made, we have recovered
forgotten lessons and also learned new ones. We believe it is important to share both with the re-
search community and with practitioners.
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7.1. Test suite reduction

The reduction of the test suite size cannot make sense if the SUT’s state depends on the test cases
previously executed: suppose the test suite shown in Figure 19, which contains two test cases test1
and test2 that respectively insert and delete a customer from a database.
If the mutants that test1 kills are all included in those killed by test2, test2 is selected for the re-

duced test suite. However, when test2 is executed in isolation, the test case will always reach the fail
statement, since the customer inserted in test1 (that is no longer executed) will not be contained in
the database.
We have observed this situation, for example, in Mangosta, the project we are using as running

example:
• Figure 20a shows a fragment of the killing matrix with 27 of its 31 test cases and

some randomly selected mutants. The mutation score is 0.75. Figure 20c shows the
summary of the execution: three test cases compose the selected reduced test suite:

Figure 19. Two test cases in a supposed test suite.

Figure 20. Reducing the test suite does not always produce reliable results.
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tryToCreateChatWithoutAddingUsersFirst, loadMembersAsAdminAndGoToEdit and
tryToAddCommentWithoutText.

• Figure 20b shows some cells of the killing matrix after executing only the reduced test suite.
The results are quite different:

○ With the whole test suite, the first test case kills mutants 8, 12, 16, 19, 33 and 35. This test
is also the only that kills mutant 24.

○ Executing only the reduced test suite, the same test leaves those mutants alive. Moreover,
the three test cases kill mutant 24. Note moreover the quite different mutation score of this
supposedly equivalent test suite, that is only 0.05 (top-left cell of the killing matrix).

In order to successfully reduce a set of test cases, and for the reduced test suite to kill the same
mutants and obtain the same mutation score as the original test suite, it is imperative that each test
case be repeatable, autonomous and independent of the other cases in the test suite.

7.2. Test case prioritization

1 In some projects, there are test cases whose execution takes much more time than others. The
14 test cases of AlarmClock, for example, are grouped in the three files appearing in
Table XVIII, that also shows the mean execution time of each test case. As it is seen, the last
test case (snoozeAlarm …) needs more than 1 min, what slows down the overall execution time
very much. Since the mutation process must only start after all the test cases do not find any
error in the original system, it is a good idea to organize the execution against mutants in
groups of test cases, sorting them by the expected execution time before launching the tests
or, even, excluding the longest test cases from the test suite.

The mutation testing processes of Offut [6] and of Usaola and Mateo [7] include, as an essential
technique to reduce costs, the execution of tests only against the mutants remaining alive (what we
have called Only Alive). Figure 21 redefines our process [7] with the consideration of the execution
time (specially worrying in mobile testing) as a mechanism technique for cost reduction: the tester
starts executing the test suite T against the SUT, S. If there are no errors, s/he separates (node 3) the
test cases in several test files (TF1 … TFn) according to the test case execution times. If it is the first
execution, mutants must be generated (node 4) and the test files iteratively launched against the mu-
tants, removing the killed mutants (node 6) and analysing the mutation score: if the prefixed thresh-
old is reached, the process can stop. Otherwise, if there are more test files, the tester launches the
next one against the mutants; if there are no more test files, s/he must create a new one to visit
and try to kill the mutants remaining alive (node 7). This new test file is executed against the
original system on (node 8): if it finds any error, the system must be fixed (and new mutants will
have to be later generated because S has changed); otherwise, the new file can be directly executed
against M.

Table XVIII. Mean execution times of Alarm Clock’s test cases.

Test file Test case Mean time (ms)

DaysOfWeekTest testSaturday … 1,900
testMondayA … 1,932
testSunday … 2,095

DurationUtilsTest testBreakdown 2,139
AlarmTest setRecurringDays … 2,014

snoozeAlarm … 2,170
alarm_RingsAt_... (1) 2,205
alarm_RingsAt_... (2) 2,220
alarm_RingsAt_... (3) 2,273
alarm_RingsAt_... (4) 2,293
alarm_RingsAt_... (5) 2,418
alarm_RingsAt_... (6) 2,443
snoozeAlarm_IsSnoozed_... 62,172
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For the case of the AlarmClock project, excluding the longest test case from the first execution
saves 4 s in the execution of every mutant. In the second iteration (node 5), this test case will be
launched only against the mutants remaining alive, which are far fewer than before. The risk, with
this approach, is that test cases in the first test files kill a small number of mutants.
2 All test cases under the androidTest folder (Figure 2) require the generation of an apk file and

its installation onto a device. Some testers leave the unit tests in this folder, what slows down
the execution time. It is important to leave the unit tests in its own folder, since they are exe-
cuted much more quickly.

3 To avoid the execution of test cases against mutants that will not be visited, the tester should
not generate mutants with Android-specific operators for executing unit tests.

4 When BacterioWeb fills the killing matrix, it shows a number that indicates the order in which
the test case has been executed against every mutant (Figure 23). This information is interest-
ing for sorting the test suite when facing future regression test cycles.

Figure 21. A mutation process, specifically adapted to mobile software.
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5 The process described in Figure 21 can be adapted for regression testing: suppose a system S
composed by classes A, B and C. Let be TS a test suite that (1) does not find any fault in S, (2)
is mutation-adequate and (3) only contains the best test cases obtained from the application of
a test suite reduction algorithm (Section 3.2). If one the classes in the system (let be A) changes
after the addition of, for example, a new functionality, the tester must, in the first time, to
re-execute TS against the new version of S (let be S′) to find possible new faults. If TS does
find no faults, then it is recommendable to generate new mutants (i.e. A1 and A2) only for
the classes that have changed and re-execute TS only against these new mutants. According
to the figure, if TS does not reach the mutation score threshold, new test cases should be added
to TS.

7.3. Detection of equivalent mutants

1 Although Mutant Schema improves the total execution time, it makes it much more difficult to
find the reason why a mutant remains alive due to a poorer legibility of the code (Figure 9,
Section 5.2).

7.4. Structure of test cases

1 Some mutants may lead the app to enter in an infinite loop (e.g. if a counter variable is de-
creased inside a loop). Android test cases can be annotated with a timeout label: if the test case
has not finished after this timeout, the mutant is considered killed. Some authors resolve this
with weak mutation by the instrumentation of the code.

2 It is also interesting to include frequent assertions in test cases (i.e. not only an oracle at the end
of the test case): when we started to test Kuar, every test case reproduced a complete match.
This required performing many movements to drive the board to its final state (from the left
side of Figure 22 to the right side) and took a long time because initially there was only one
oracle instruction (assertX) at the end of each test case to check the final result. In order to de-
tect killed mutants as soon as possible, we introduced frequent assertions (one assert after each
movement). This considerably accelerates test execution.

8. FUTURE WORK

Besides the convenience of applying cost-reduction techniques (both those analysed in this article
as other ones, such as the reduction of the number of mutants), mutation testing for mobile software
is quite costly, and it requires researching on new techniques and techniques combinations that,

Figure 22. Kuar’s board.
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furthermore, could be extended to other kinds of systems. Below, we describe some lines of work
we consider quite interesting and that could drive future research.

8.1. Specific operators for mobile software and operators subsumption

In this article, we have applied classical and Android-specific mutation operators. Some of these
have been reproduced from the descriptions given in the literature [4, 5], and we have implemented
some others. The idea of mutation operators specifically built for a concrete technology is to
introduce typical errors of such technology.
Many of the Android-specific operators introduce errors that may be also inserted by classic op-

erators. Consider for example the MDL operator that deletes a lifecycle method of an activity. Deng
et al. [4] propose this operator, but they warn that it is ‘similar to the Overriding Method Deletion in
muJava’ [33]. Thus, if the tool offers the tester both operators, two redundant mutants will be
generated.
Another example is IPR, which replaces the second parameter of the putExtra method by a de-

fault value (zero if it is primitive, null and the empty string if it is a String, etc.). MJP is similar
to IPR, but changes the values put in JSON objects. Actually, the same mutants can be generated
with other classical operators, such as the Scalar Variable Replacement operator of the classic
Mothra system [48].
Therefore, it is likely required to carry out an extensive study of operators’ subsumption, in order

to avoid the generation of duplicate mutants.

8.2. Mutant generation guided by metrics

There are many studies that correlate software metrics with the fault-proneness of the system’s
modules [49–50]. With a previous static analysis of the system, the tester could focus mutant gen-
eration on those classes that have more coupling, which is the best predictor according to those
studies.
As an example, the Figures project (that was specifically developed for testing some of the

BacterioWeb characteristics) has the LocalCalculus and RemoteCalculus classes, which are used
to determine the type and perimeter of the figure in the self app or via a query to a web server. Since
almost any test scenario runs one of these two classes, it can be promising to determine ‘execution
clusters’ to concentrate the mutant generation on them.

8.3. Mutant execution guided by static analysis

Such ‘execution clusters’ would avoid the execution of test cases against mutants that they will not
kill: for example, it probably makes no sense to execute a test case that determines the type of a
Triangle against a mutant of Quadrilateral. Before the execution of the tests, a static analysis of
the code could help to relate test cases with classes of the SUT, therefore producing a more
fine-grained set of clusters, composed now by tests and classes of the SUT. The result of this anal-
ysis would guide the execution of each test only against the mutants from the classes it will visit.
Some authors have researched on mutant clustering to reduce the execution time, but applying

other strategies: Ma and Kim [51] and Yu and Ma [52] built the clusters based on the mutants that
are expected to produce the same result with test cases. Ji et al. [53] proposed to cluster mutants
based on their Hamming distance.

8.4. Algorithms for Parallel Execution

At first glance, putting more devices to execute tests and mutants is a brute force mechanism that,
undoubtedly, must improve the overall execution time.
As a mean, we can guess that using 2 devices will require half time than using 1, and that using n

will take 1/n. We have observed that his premise is true when there are many mutants (suppose
1,000 mutants, 100 of which require more time than the others: these 100 mutants will be fairly
distributed to the two devices). However, when there are few mutants, there may be significant
differences among the devices.
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Figure 23 shows an example of BacterioWeb executing the Mangosta test cases against a small
sample (only 2%, since the figure is only for illustrating purposes) of mutants. As it can be seen,
it is applying the Only against alive algorithm (refer to the figure the selected ‘Matrix mode’ radio
button) and With Mutant Schema. There are four devices (Samsung tablets, model SM-T590, An-
droid 8.1.0 and 3 Gb RAM) that have received 17 mutants each. The second, third and fourth de-
vices have finished the execution, while the first one still has four mutants left.
A more equitable time distribution could be achieved by distributing the mutants with other

parallel execution algorithms. For example, when a device finishes the execution of the test suite
(either with Only against alive or with All against all), it could ask for a new mutant to be executed.
In a previous article, we analysed five different algorithms for parallel execution in mutation test-

ing [32]: Distribute mutants between operators, Distribute test cases, Give mutants on demand,
Give test cases on demand and Parallel execution with dynamic ranking and order.
It is possible to build new mathematical models or to extend those in Section 5, with the inclusion

of these or of other algorithms.

9. CONCLUSIONS

Several recent researchers have analysed the suitability of mutation for testing mobile software.
Most of these works focus on the proposal and application of specific mutation operators to
reproduce the particular errors of this kind of software. Even though they highlight the suitability
of mutation for this context, some of them also emphasize the great amount of time it requires.
In order to extend the research lines in this area, this paper has analysed how different classic cost

reduction techniques influence on the mutation testing time of mobile software.
The main contributions of this article are related to how several well-known cost reduction tech-

niques help to the effective improvement of testing time. The techniques we have used are Mutant
Schema, Only Alive and Parallel Execution, as well as several combinations of them. The baseline
for the comparisons is a classic model of mutation testing, where there is a complete cycle of com-
pilation, deployment and test execution per mutant.

Figure 23. Killing matrix during one execution.
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The first technique considered is Mutant Schema, which requires to generate the schema and just
one deployment onto the running device. Being the deployment a very significant task in mobile
testing, the obtained results always show meaningful cost savings when Mutant Schema is applied.
However, an interesting finding is that its improvement factor tends to be asymptotic with respect to
the number of mutants: in fact, as more mutants there are and greater is the execution time, less
significant is the influence of the deployment time on the total cost.
The second technique used compares the execution of the test cases against all the mutants

versus only the mutants remaining alive. Here, the improvement in the testing time depends
on the quality of the test cases: as earlier the mutants are killed, less test cases will have to be
executed.
The third technique is Parallel execution, which has evidenced to be the most influencing

cost-reduction factor. The experiments have shown that the reduction in time is roughly propor-
tional to the number of devices. The total execution time is the time required by the device that
needs more time for executing its set of mutants. In this factor influence both the characteristics
of the device (memory, processor...) as the nature of every mutant. When the number of mutants
is very high, they are fairly distributed on the devices (both the ‘quick’ and the ‘slow’ mutants).
Thus, the reduction is not strictly 1/n, but it is very approximate. Even though, the reduction may
be improved with other parallel execution algorithms (Section 8.4).
In our opinion, this paper complements other research works on mutation testing applied to mo-

bile software. One additional contribution of this article is the suitability of the proposed mathemat-
ical models for describing the execution time of test cases in mutation testing. This result is
interesting for build prediction models before implementing tools and techniques for mutation test-
ing, what can shorten the research times.
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